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The fractal nature of a fracture surface 
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Abstract. A kinetic model is presented which simulates the propagation of cracks in solids 
composed of discrete atoms. The resulting fracture surface is found to  be a fractal, the 
dimension of which depends on  the elastic constants of the material. 

It has been claimed recently [l-31 that frature surfaces in materials are fractal in 
nature, i.e. ‘self-similar’, over a wide range of scale. Differing from diffusion-limited 
aggregation ( D L A )  [4], dielectric breakdown [5] and  viscous fingering [6], fracture 
surfaces are found to be another kind of fractal. 

Fracture phenomena are some of the most intriguing processes in materials science. 
Many factors affect these processes, such as grain boundaries, environment, temperature 
and anisotropies [7]. A macroscopic treatment of the fractal nature of fracture has 
been carried out recently [8]. The present approach, which is based on a kinetic model, 
is entirely microscopic. Consider a two-dimensional ( x y )  square lattice of nodes. These 
nodes are linked in the x and y directions by harmonic springs with force constants 
K ,  and K , .  Suppose a bond in the centre of the network has been broken. We want 
to simulate the way in which the crack propagates, when a load is applied along the 
y direction, until the network breaks into two parts. 

We restrict ourselves to this case: only the bonds neighbouring the broken bonds 
are the candidates for subsequent breakage, so the crack propagates through the ‘tips’. 
The bond breakage is controlled by thermal activation, and this process is examined 
with the help of the following kinetic model. The unbroken candidate is broken in 
the next step with a probability: 

where U,  is an  activation energy, E, is the elastic energy stored in the bond, K is 
Boltzmann’s constant and  T is the absolute temperature. E, is expressed as: 

E ,  = i K , ( A l t ) 2 .  ( 2 )  
Here K ,  is the force constant for bond i and Al,  is the elongation. The total probability 
for all the candidates in one step is set to 1, i.e. one and only one bond is broken in 
one step. The nearest-neighbouring bonds of a chosen bond are illustrated in figure 1. 

Our  model thus resembles that of Termonia and Meakin ( T M )  [ 9 ] .  But our work 
differs from theirs in at least three respects. First, in our model the crack propagates 
only through the crack tips, i.e. only the bonds neighbouring the broken bonds possess 
overwhelming probabilities of breakage, while the TM model assumed all the unbroken 
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Figure 1.  Eight nearest-neighbouring bonds (solid line segments) of a chosen bond (broken 
line segment) .  
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Figure 2. ( a )  The  fracture surface for case a :  K ,  = K ,  = 20. ( b )  The  fracture surface for  
case b: K ,  =200, K ,  = I O .  

bonds to have some breakage probabilities similar to (1). In reality, the existing defects 
(or cracks) can assist the breakage of the material near the defects [lo]. Second, the 
normalisations of the probabilities are different. In the TM model, the most stressed 
bond breaks with probability of 1. Third, in the work of TM, the node had non-zero 
size, in contrast to our ‘point’ node. 
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Figure 3. ( a  1 The graph of broken bonds for case a:  K ,  = K ,  = 20. ( b )  The  graph of broken 
bonds for case b :  K ,  = 200, K ,  = 20. 

For simplicity, we assume that the motion of the nodes along the x and y axes are 
mutually independent [ 111, and we focus on their displacements along the y axis where 
the network is strained. We start with a network with one broken bond (crack embryo) 
in the centre. The network is loaded along the y axis so that the length of the network 
in this direction is stretched by 20%, and the uppermost and lowermost lattice points 
are then fixed throughout the process, the free boundary condition is assumed for the 
leftmost and  rightmost lattice points. Then the network recovers its equilibrium state, 
i.e. the force acting on every node equals zero (equation (3)).  The simulation is 
completed in a series of steps. At each step, one bond out of the candidates breaks 
according to ( l ) ,  ( 2 ) ,  and then the network proceeds to its new equilibrium state which 
is characterised by the following equation: 

c K,,(y, - Y , )  = 0 (3 1 
I 

where y ,  is the y coordinate for node i, KJI is the force constant of the bond connecting 
nodes i and  j (K , ,  = 0, if the bond is a broken bond),  the sum index j runs over all 
the nearest nodes of node i. These steps are repeated until the network breaks. The 
network is considered to be broken into two parts when the elongation of all the bonds 
are zero to within an  error of unit length (we assume the lattice constant to be 
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unit). Under the assumption of nearest-neighbour interaction, (3 )  is a block-tridiagonal 
equation. It can be solved by the block-overrelaxation method [ 121, and the coordinates 
y ,  in (3) were calculated to within an error of In this work, a network consisting 
of 50 nodes in the y direction and 100 nodes in the x direction was used. The CPU 

time taken was 4-11 hours on a FACOM M340. For simplicity, we chose equal 
activation energy for all the bonds (equation (1)) and took K T  = 1. In order to compare 
our model with TM model effectively, the force constants were adopted from TM [9], 
i.e., K ,  = K,. = 20 for case a, K ,  = 200, K ,  = 20 for case b. After fracture, the fracture 
surface is not strictly ‘smooth’. Figure ‘2 shows two typical fracture surfaces. The 
corresponding graphs of broken bonds are shown in figure 3. The irregularity of the 
surface can be characterised by its fractal dimension [ 1-31. The fractal dimension was 
obtained by measuring the length of the fracture ‘surface’ (which was a curve in our 
two-dimensional simulation) using yardsticks of different sizes. The fractal dimension 
of the ‘surface’ D was obtained by the following equation: 

n - r - D  (4) 

where n is the number of the yardsticks of size r needed to cover the fracture ‘surface’. 
Figure 4 shows the log-log dependence of n on r for case a and case b. Fitting a 
straight line in the range 2 < r < 30 gives D = 1.011 kO.003 for case a and D = 
1.248i0.017 for case b, in contrast to the result of TM [ 9 ] .  From the log-log linearity, 
the fractal nature of the fracture surface is evident. 

Figure 4. Log-log dependence of n on r (equation (4)): ( a )  K ,  = K ,  = 20, ( b )  K ,  = 200, 
K ,  = 20. 
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Admittedly our model may be only a crude representation of real experimental 
systems. Nevertheless, our results show the dependence of fractal dimension on the 
force constants of the materials, i.e. D does not have a universal value for all materials. 
Thus one may understand why the experimental values of the fractal dimension are 
so scattered [l-31. 
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